Получение металлов коррозия металлов. Коррозия металлов. Металлы в природе. кларк

Элементы с металлическими свойствами расположены вIA – VIA группах Периодической системы (табл. 7).

Металлами являются также все элементы, расположенные вIБ – VIIIБ ‑группах (переходные металлы).

В настоящее время в Периодической системе 92 металла.

Типичными металлами являются s‑элементы (элементы IA‑группы от Li до Fr, элементы IIA‑группы от Mg до Ra). Общая электронная формула их атомов ns 1–2 . Для них характерны степени окисления +I и +II соответственно.

Небольшое число электронов (1–2) на внешнем энергетическом уровне атомов типичных металлов предполагает легкую потерю этих электронов и проявление сильных восстановительных свойств, что отражают низкие значения электроотрицательности. Отсюда вытекает ограниченность химических свойств и способов получения типичных металлов.

Характерной особенностью типичных металлов является стремление их атомов образовывать катионы и ионные химические связи с атомами неметаллов. Соединения типичных металлов с неметаллами – это ионные кристаллы «катион металлаанион неметалла», например К + Br ‑ , Са 2+ O 2‑ . Катионы типичных металлов входят также в состав соединений со сложными анионами – гидроксидов и солей, например Mg 2+ (OH ‑) 2 , (Li +) 2 CO 3 2‑ .

Металлы А‑групп, образующие диагональ амфотерности в Периодической системе Be‑Al‑Ge‑Sb‑Po, а также примыкающие к ним металлы (Ga, In, Tl, Sn, Pb, Bi) не проявляют типично металлических свойств. Общая электронная формула их атомов ns 2 np 0–4 предполагает большее разнообразие степеней окисления, большую способность удерживать собственные электроны, постепенное понижение их восстановительной способности и появление окислительной способности, особенно в высоких степенях окисления (характерные примеры – соединения Тl III , Pb IV , Bi v). Подобное химическое поведение характерно и для большинства d‑элементов, т. е. элементов Б‑групп Периодической системы (типичные примеры – амфотерные элементы Cr и Zn).

Это проявление двойственности (амфотерности) свойств, одновременно металлических (основных) и неметаллических, обусловлено характером химической связи. В твердом состоянии соединения нетипичных металлов с неметаллами содержат преимущественно ковалентные связи (но менее прочные, чем связи между неметаллами). В растворе эти связи легко разрываются, а соединения диссоциируют на ионы (полностью или частично). Например, металл галлий состоит из молекул Ga 2 , в твердом состоянии хлориды алюминия и ртути(II) AlCl 3 и HgCl 2 содержат сильно ковалентные связи, но в растворе AlCl 3 диссоциирует почти полностью, a HgCl 2 – в очень малой степени (да и то на ионы HgCl + и Cl ‑).

В свободном виде все металлы – твердые вещества, кроме одного – ртути Hg, которая при обычных условиях жидкость. В кристаллах металлов преобладает особый вид связи (металлическая связь); валентные электроны слабо связаны с конкретным атомом в решетке, и внутри металла существует так называемый электронный газ. Все металлы обладают высокой электропроводимостью (наибольшая y Ag, Cu, Аи, Al, Mg) и теплопроводностью. Встречаются низкоплавкие металлы (цезий Cs с температурой плавления 28,7 °C плавится от тепла руки) и, наоборот, весьма тугоплавкие (вольфрам W плавится лишь при 3387 °C). Отличительным свойством металлов служит их пластичность (ковкость), вследствие чего они могут быть прокатаны в тонкие листы – фольгу (Sn, Al, Au) или вытянуты в проволоку (Cu, Al, Fe), однако встречаются и очень хрупкие металлы (Zn, Sb, Bi).

В промышленности часто используют не чистые металлы, а их смеси – сплавы, в которых полезные свойства одного металла дополняются полезными свойствами другого. Так, медь обладает невысокой твердостью и малопригодна для изготовления деталей машин, сплавы же меди с цинком (латунь ) являются уже достаточно твердыми и широко используются в машиностроении. Алюминий обладает высокой пластичностью и достаточной легкостью (малой плотностью), но слишком мягок. На его основе готовят сплав с магнием, медью и марганцем – дуралюмин (дюраль), который, не теряя полезных свойств алюминия, приобретает высокую твердость и становится пригодным в авиастроении. Сплавы железа с углеродом (и добавками других металлов) – это широко известные чугун и сталь.

Металлы в свободном виде являются восстановителями . Однако реакционная способность некоторых металлов невелика из‑за того, что они покрыты поверхностной оксидной пленкой, в разной степени устойчивой к действию таких химических реактивов, как вода, растворы кислот и щелочей.

Например, свинец всегда покрыт оксидной пленкой, для его перехода в раствор требуется не только воздействие реактива (например, разбавленной азотной кислоты), но и нагревание. Оксидная пленка на алюминии препятствует его реакции с водой, но под действием кислот и щелочей разрушается. Рыхлая оксидная пленка {ржавчина ), образующаяся на поверхности железа во влажном воздухе, не мешает дальнейшему окислению железа.

Под действием концентрированных кислот на металлах образуется устойчивая оксидная пленка. Это явление называется пассивацией. Так, в концентрированной серной кислоте пассивируются (и после этого не реагируют с кислотой) такие металлы, как Be, Bi, Со, Fe, Mg и Nb, а в концентрированной азотной кислоте – металлы Al, Be, Bi, Со, Cr, Fe, Nb, Ni, Pb, Th и U.

При взаимодействии с окислителями в кислых растворах большинство металлов переходит в катионы, заряд которых определяется устойчивой степенью окисления данного элемента в соединениях (Na + , Са 2+ , Al 3+ , Fe 2+ и Fe 3+).

Восстановительная активность металлов в кислом растворе передается рядом напряжений. Большинство металлов переводится в раствор соляной и разбавленной серной кислотами, но Cu, Ag и Hg – только серной (концентрированной) и азотной кислотами, a Pt и Аи – «царской водкой».

Нежелательным химическим свойством металлов является их коррозия, т. е. активное разрушение (окисление) при контакте с водой и под воздействием растворенного в ней кислорода (кислородная коррозия). Например, широко известна коррозия железных изделий в воде, в результате чего образуется ржавчина, и изделия рассыпаются в порошок.

Коррозия металлов протекает в воде также из‑за присутствия растворенных газов СO 2 и SO 2 ; создается кислотная среда, и катионы Н + вытесняются активными металлами в виде водорода Н 2 (водородная коррозия).

Особенно коррозионно‑опасным может быть место контакта двух разнородных металлов (контактная коррозия). Между одним металлом, например Fe, и другим металлом, например Sn или Cu, помещенными в воду, возникает гальваническая пара. Поток электронов идет от более активного металла, стоящего левее в ряду напряжений (Fe), к менее активному металлу (Sn, Cu), и более активный металл разрушается (корродирует).

Именно из‑за этого ржавеет луженая поверхность консервных банок (железо, покрытое оловом) при хранении во влажной атмосфере и небрежном обращении с ними (железо быстро разрушается после появления хотя бы небольшой царапины, допускающей контакт железа с влагой). Напротив, оцинкованная поверхность железного ведра долго не ржавеет, поскольку даже при наличии царапин корродирует не железо, а цинк (более активный металл, чем железо).

Сопротивление коррозии для данного металла усиливается при его покрытии более активным металлом или при их сплавлении; так, покрытие железа хромом или изготовление сплава железа с хромом устраняет коррозию железа. Хромированное железо и сталь, содержащая хром (нержавеющая сталь), имеют высокую коррозионную стойкость.

Общие способы получения металлов в промышленности:

электрометаллургия, т. е. получение металлов электролизом расплавов (для наиболее активных металлов) или растворов солей;

пирометаллургия, т. е. восстановление металлов из руд при высокой температуре (например, получение железа в доменном процессе);

гидрометаллургия, т. е. выделение металлов из растворов их солей более активными металлами (например, получение меди из раствора CuSO 4 действием цинка, железа или алюминия).

В природе иногда встречаются самородные металлы (характерные примеры – Ag, Au, Pt, Hg), но чаще металлы находятся в виде соединений (металлические руды). По распространенности в земной коре металлы различны: от наиболее распространенных – Al, Na, Са, Fe, Mg, К, Ti до самых редких – Bi, In, Ag, Au, Pt, Re.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Распространенные элементы. строение атомов. Электронные оболочки. Орбитали
Химический элемент – определенный вид атомов, обозначаемый названием и символом и характеризуемый порядковым номером и относительной атомной массой. В табл. 1 перечи

В каждой орбитали может разместиться не более двух электронов
Один электрон на орбитали называется неспаренным, два электрона – электронной парой:

Свойства элементов находятся в периодической зависимости от порядкового номера
Периодически повторяющийся характер изменения состава электронной оболочки атомов элементов объясняет периодическое изменение свойств элементов при движении по периодам и группам Пе

Молекулы. Химическая связь. Строение веществ
Химические частицы, образованные из двух или нескольких атомов, называются молекулами (реальными или условными формульными единицами многоатомных веществ). Атомы в мол

Кальций
Кальций – элемент 4‑го периода и IIA‑группы Периодической системы, порядковый номер 2O. Электронная формула атома 4s2, степени окислен

Алюминий
Алюминий – элемент 3‑го периода и IIIA‑группы Периодической системы, порядковый номер 13. Электронная формула атома 3s23p1,

Марганец
Марганец – элемент 4‑го периода и VIIB‑группы Периодической системы, порядковый номер 25. Электронная формула атома 3d54s2;

Водород
Водород – первый элемент Периодической системы (1‑й период, порядковый номер 1). Не имеет полной аналогии с остальными химическими элементами и не принадлежит ни к како

Хлор. Хлороводород
Хлор – элемент 3‑го периода и VII А‑группы Периодической системы, порядковый номер 17. Электронная формула атома 3s23p5, ха

Хлориды
Хлорид натрия NaCl. Бескислородная соль. Бытовое название поваренная соль. Белый, слабогигроскопичный. Плавится и кипит без разложения. Умеренно раствори

Гипохлориты. Хлораты
Гипохлорит кальция Са(СlO)2. Соль хлорноватистой кислоты HClO. Белый, при нагревании разлагается без плавления. Хорошо растворим в холодной воде (обр

Бромиды. Иодиды
Бромид калия КBr. Бескислородная соль. Белый, негигроскопичный, плавится без разложения. Хорошо растворим в воде, гидролиза нет. Восстановитель (более слабый, ч

Кислород
Кислород – элемент 2‑го периода и VIA‑группы Периодической системы, порядковый номер 8, относится к халькогенам (но чаще рассматривается отдельно). Электронная фо

Сера. Сероводород. Сульфиды
Сера – элемент 3‑го периода и VIA‑группы Периодической системы, порядковый номер 16, относится к халькогенам. Электронная формула атома 3s

Диоксид серы. Сульфиты
Диоксид серы SO2. Кислотный оксид. Бесцветный газ с резким запахом. Молекула имеет строение незавершенного треугольника [: S(O)2] (sр

Серная кислота. Сульфаты
Серная кислота H2SO4. Оксокислота. Бесцветная жидкость, очень вязкая (маслообразная), весьма гигроскопичная. Молек

Азот. Аммиак
Азот – элемент 2‑го периода и VA‑группы Периодической системы, порядковый номер 7. Электронная формула атома 2s22p3, характе

Оксиды азота. Азотная кислота
Монооксид азота NO. Несолеобразующий оксид. Бесцветный газ. Радикал, содержит ковалентную σπ‑связь (N=O), в твердом состоянии димер N2

Нитриты. Нитраты
Нитрит калияKNO2. Оксосоль. Белый, гигроскопичный. Плавится без разложения. Устойчив в сухом воздухе. Очень хорошо растворим в воде (образуется бесцв

Углерод в свободном виде
Углерод – элемент 2‑го периода и IVA‑группы Периодической системы, порядковый номер 6. Химия углерода – это в основном химия органических соединений; неорганическ

Оксиды углерода
Монооксид углерода СО. Несолеобразующий оксид. Бесцветный газ, без запаха, легче воздуха. Молекула слабополярна, содержит ковалентную тройную σππ

Карбонаты
Карбонат натрия Na2CO3. Оксосоль. Техническое название кальцинированная сода. Белый, при нагревании плавится и разлагается. Чувстви

Кремний
Кремний – элемент 3‑го периода и IVA‑группы Периодической системы, порядковый номер 14. Электронная формула атома 3s23p2. Х

Алканы. Циклоалканы
Алканы (парафины) – это соединения углерода с водородом, в молекулах которых атомы углерода соединены между собой одинарной связью (предельные углеводоро

Алкены. Алкадиены
Алкены (олефины) – это углеводороды, в молекулах которых содержатся атомы углерода, соединенные между собой двойной связью (непредельные углеводороды ряд

Спирты. Простые эфиры. Фенолы
Спирты – производные углеводородов, содержащие функциональную группу ОН (гидроксил). Спирты, в которых имеется одна группа ОН, называются одноат

Альдегиды и кетоны
Альдегиды и кетоны – это производные углеводородов, содержащие функциональную карбонильную группу СО. В альдегидах карбонильная группа связана с а

Карбоновые кислоты. Сложные эфиры. Жиры
Карбоновые кислоты – это производные углеводородов, содержащие функциональную группу СООН (карбоксил). Формулы и названия некоторых распространенных ка

Углеводы
Углеводы (сахара) – важнейшие природные соединения, состоящие из углерода, водорода и кислорода. Углеводы подразделяются на моносахариды, дисахариды и полис

Нитросоединения. Амины
Очень важны в народном хозяйстве азотсодержащие органические вещества. Азот может входить в органические соединения в виде нитрогруппы NO2, аминогруппы NH2 и а

Аминокислоты. Белки
Аминокислоты – органические соединения, содержащие в своем составе две функциональные группы – кислотную СООН и аминную NH2

Скорость реакций
Количественной характеристикой быстроты течения химической реакции А + B → D + E является ее скорость, т. е. скорость взаимодействия частиц реагентов А

Скорость химической реакции прямо пропорциональна произведению молярных концентраций реагентов
если для реакции необходимо столкновение двух реагирующих молекул. Эта зависимость носит название кинетического закона действующих масс (К. Гулльберг, П. Вог

Энергетика реакций
Любая реакция сопровождается выделением или поглощением энергии в форме теплоты. В исходных веществах химические связи разрываются, и на это энергия затрачивается (т. е. она при это

Обратимость реакций
Химическая реакция называется обратимой, если в данных условиях протекает не только прямая реакция (→), но также и обратная реакция т. е. из исходных веществ образуются

При воздействии на равновесную систему химическое равновесие смещается в сторону, противодействующую этому воздействию
Рассмотрим подробнее влияние таких факторов, как температура, давление, концентрация, на смещение равновесия. 1. Температура. Повышение температуры сме

Растворимость веществ в воде
Раствор – это гомогенная система, состоящая из двух или более веществ, содержание которых можно изменять в определенных пределах без нарушения однородности.

Электролитическая диссоциация
Растворение любого вещества в воде сопровождается образованием гидратов. Если при этом в растворе не происходит формульных изменений у частиц растворенного вещества, то такие вещест

Диссоциация воды. Среда растворов
Сама вода – это очень слабый электролит:

Реакции ионного обмена
В разбавленных растворах электролитов (кислот, оснований, солей) химические реакции протекают обычно при участии ионов. При этом все элементы реагентов могут сохра

Гидролиз солей
Гидролиз соли – это взаимодействие ее ионов с водой, приводящее к появлению кислотной или щелочной среды, но не сопровождающееся образованием осадка или газа (ниже

Окислители и восстановители
Окислительно‑восстановительные реакции протекают с одновременным повышением и понижением степеней окисления элементов и сопровождаются передачей электронов:

Подбор коэффициентов методом электронного баланса
Метод состоит из нескольких этапов. 1. Записывают схему реакции; находят элементы, повышающие и понижающие свои степени окисления, и выпи

Ряд напряжений металлов
В ряду напряжений металлов стрелка отвечает уменьшению восстановительной способности металлов и увеличению окислительной способности их катионов в водном растворе (кислотная среда):

Электролиз расплава и раствора
Электролизом называется окислительно‑восстановительный процесс, протекающий на электродах при прохождении постоянного электрического тока через растворы или

Массовая доля растворенного вещества. Разбавление, концентрирование и смешивание растворов
Массовая доля растворенного вещества В (ω в) – это отношение массы вещества В (т в) к массе раствора (m (р)

Объемное отношение газов
Для химической реакции a A + b B = c C + d D выполняется соотношение

Масса (объем, количество вещества) продукта по реагенту в избытке или с примесями
Избыток и недостаток реагентов. Количества, массы и объемы (для газов) реагентов не всегда берутся стехиометрическими, т. е. в соответствии с уравнениями реакции. Ч

Нахождение молекулярной формулы органического соединения
При выведении формул веществ, особенно в органической химии, часто используют относительную плотность газа. Относительная плотность газа X – отношение абсолютной пло

«Методы защиты металлов от коррозии» - Гальваническая протекторная защита. Химическая коррозия. Механизм коррозии. Многие металлы при коррозии. Анод разрушается. Укупоривание ржавчины. Фосфатирование. Процесс коррозии. Поражение. Поверхности. Коррозионное растрескивание. Электрохимическая коррозия. Защита от коррозии. Холодное цинкование.

«Коррозия металлов и её виды» - Классификация видов коррозии. Познавательные задачи. Пробирки. Лабораторный опыт. Факторы, провоцирующие процесс коррозии. Коррозия. Процессы протекающие на катоде. Процесс коррозии. Интенсивность коррозии. Способы защиты от коррозии. Примеры защиты металлических изделий. Изобретательская задача. Задачи.

«Коррозия металла» - Зачем нужны металлы? Разрушение металлов и сплавов под воздействием окружающей среды называется коррозией. Физические свойства металлов. Коррозия металлов Способы получения металлов. Электролиз. Металлическая связь. Из двух металлов корродирует более активный. Общие физические свойства металлов. Химические свойства металлов.

«Виды коррозии металлов» - Электрохимический ряд напряжений металлов. Электрохимическая коррозия. Коррозия. Виды защиты от коррозии. Химическая коррозия. Памятники. Ржавая крыса. Способы защиты от коррозии. Виды коррозии. Коррозия металлов. Опасность.

«Процесс коррозии металлов» - Металлы побочных подгрупп. Коррозия металлов. Коррозионные свойства металлов. Коррозия – рыжая крыса, грызет металлический лом. Самопроизвольное разрушение металлов и сплавов. Способы защиты от коррозии. Электрохимическая коррозия. Виды коррозии. Химическая коррозия. Восстановители - металлы. Алюминий.

«Коррозия металлов» - Практический этап. Способы защиты от коррозии. Условия, способствующие электрохимической коррозии. Повышение температуры. Исторический этап. Механизм электрохимической коррозии. Чем активнее металл, тем он больше подвержен коррозии. Факторы, вызывающие коррозию. Корррозия отрицательно влияет на жизнь и здоровье людей.

Всего в теме 9 презентаций

Материалы из металлов под химическим или электрохимическим воздействием окружающей среды подвергаются разрушению, которое называется коррозией. Коррозия металлов вызывается , в результате которых металлы переходят в окисленную форму и теряют свои свойства, что приводит в негодность металлические материалы.

Можно выделить 3 признака, характеризующих коррозию:

  • Коррозия – это с химической точки зрения процесс окислительно-восстановительный.
  • Коррозия – это самопроизвольный процесс, возникающий по причине неустойчивости термодинамической системы металл – компоненты окружающей среды.
  • Коррозия – это процесс, который развивается в основном на поверхности металла. Однако, не исключено, что коррозия может проникнуть и вглубь металла.

Виды коррозии металлов

Наиболее часто встречаются следующие виды коррозии металлов :

  1. Равномерная – охватывает всю поверхность равномерно
  2. Неравномерная
  3. Избирательная
  4. Местная пятнами – корродируют отдельные участки поверхности
  5. Язвенная (или питтинг)
  6. Точечная
  7. Межкристаллитная – распространяется вдоль границ кристалла металла
  8. Растрескивающая
  9. Подповерхностная
Основные виды коррозии

С точки зрения механизма коррозионного процесса можно выделить два основных типа коррозии: химическую и электрохимическую.

Химическая коррозия металлов

Химическая коррозия металлов — это результат протекания таких химических реакций, в которых после разрушения металлической связи, атомы металла и атомы, входящие в состав окислителей, образуют . Электрический ток между отдельными участками поверхности металла в этом случае не возникает. Такой тип коррозии присущ средам, которые не способны проводить электрический ток – это газы, жидкие неэлектролиты.

Химическая коррозия металлов бывает газовой и жидкостной.

Газовая коррозия металлов – это результат действия агрессивных газовых или паровых сред на металл при высоких температурах, при отсутствии конденсации влаги на поверхности металла. Это, например, кислород, диоксид серы, сероводород, пары воды, галогены. Такая коррозия в одних случаях может привести к полному разрушению металла (если металл активный), а в других случаях на его поверхности может образоваться защитная пленка (например, алюминий, хром, цирконий).

Жидкостная коррозия металлов – может протекать в таких неэлектролитах, как нефть, смазочные масла, керосин и др. Этот тип коррозии при наличии даже небольшого количества влаги, может легко приобрести электрохимический характер.

При химической коррозии скорость разрушения металла пропорциональна и той скорости с которой окислитель проникает сквозь пленку оксида металла, покрывающую его поверхность. Оксидные пленки металлов могут проявлять или не проявлять защитные свойства, что определяется сплошностью.

Сплошность такой пленки оценивают величине фактора Пиллинга-Бэдвордса: (α = V ок /V Ме) по отношению объема образовавшегося оксида или другого какого-либо соединения к объему израсходованного на образование этого оксида металла

α = V ок /V Ме = М ок ·ρ Ме /(n·A Me ·ρ ок) ,

где V ок — объем образовавшегося оксида

V Ме — объем металла, израсходованный на образование оксида

М ок – молярная масса образовавшегося оксида

ρ Ме – плотность металла

n – число атомов металла

A Me — атомная масса металла

ρ ок — плотность образовавшегося оксида

Оксидные пленки, у которых α < 1 , не являются сплошными и сквозь них кислород легко проникает к поверхности металла. Такие пленки не защищают металл от коррозии. Они образуются при окислении кислородом щелочных и щелочно-земельных металлов (исключая бериллий).

Оксидные пленки, у которых 1 < α < 2,5 являются сплошными и способны защитить металл от коррозии.

При значениях α > 2,5 условие сплошности уже не соблюдается , вследствие чего такие пленки не защищают металл от разрушения.

Ниже представлены значения α для некоторых оксидов металлов

металл оксид α металл оксид α
K K 2 O 0,45 Zn ZnO 1,55
Na Na 2 O 0,55 Ag Ag 2 O 1,58
Li Li 2 O 0,59 Zr ZrO 2 1.60
Ca CaO 0,63 Ni NiO 1,65
Sr SrO 0,66 Be BeO 1,67
Ba BaO 0,73 Cu Cu 2 O 1,67
Mg MgO 0,79 Cu CuO 1,74
Pb PbO 1,15 Ti Ti 2 O 3 1,76
Cd CdO 1,21 Cr Cr 2 O 3 2,07
Al Al 2 ­O 2 1,28 Fe Fe 2 O 3 2,14
Sn SnO 2 1,33 W WO 3 3,35
Ni NiO 1,52

Электрохимическая коррозия металлов

Электрохимическая коррозия металлов – это процесс разрушения металлов в среде различных , который сопровождается возникновением внутри системы электрического тока.

При таком типе коррозии атом удаляется из кристаллической решетки результате двух сопряженных процессов:

  • Анодного – металл в виде ионов переходит в раствор.
  • Катодного – образовавшиеся при анодном процессе электроны, связываются деполяризатором (вещество — окислитель).

Сам процесс отвода электронов с катодных участков называется деполяризацией, а вещества способствующие отводу – деполяризаторами.

Наибольшее распространение имеет коррозия металлов с водородной и кислородной деполяризацией .

Водородная деполяризация осуществляется на катоде при электрохимической коррозии в кислой среде

2H + +2e — = H 2 разряд водородных ионов

2H 3 O + +2e — = H 2 + 2H 2 O

Кислородная деполяризация осуществляется на катоде при электрохимической коррозии в нейтральной среде

O 2 + 4H + +4e — = H 2 O восстановление растворенного кислорода

O 2 + 2H 2 O + 4e — = 4OH —

Все металлы, по их отношению к электрохимической коррозии , можно разбить на 4 группы, которые определяются величинами их :

  1. Активные металлы (высокая термодинамическая нестабильность) – это все металлы, находящиеся в интервале щелочные металлы — кадмий (Е 0 = -0,4 В). Их коррозия возможна даже в нейтральных водных средах, в которых отсутствуют кислород или другие окислители.
  2. Металлы средней активности (термодинамическая нестабильность) – располагаются между кадмием и водородом (Е 0 = 0,0 В). В нейтральных средах, в отсутствии кислорода, не корродируют, но подвергаются коррозии в кислых средах.
  3. Малоактивные металлы (промежуточная термодинамическая стабильность) – находятся между водородом и родием (Е 0 = +0,8 В). Они устойчивы к коррозии в нейтральных и кислых средах, в которых отсутствует кислород или другие окислители.
  4. Благородные металлы (высокая термодинамическая стабильность) – золото, платина, иридий, палладий. Могут подвергаться коррозии лишь в кислых средах при наличии в них сильных окислителей.

Электрохимическая коррозия может протекать в различных средах. В зависимости от характера среды выделяют следующие виды электрохимической коррозии:

  • Коррозия в растворах электролитов — в растворах кислот, оснований, солей, в природной воде.
  • Атмосферная коррозия – в атмосферных условиях и в среде любого влажного газа. Это самый распространенный вид коррозии.

Например, при взаимодействии железа с компонентами окружающей среды, некоторые его участки служат анодом, где происходит окисление железа, а другие – катодом, где происходит восстановление кислорода:

А: Fe – 2e — = Fe 2+

K: O 2 + 4H + + 4e — = 2H 2 O

Катодом является та поверхность, где больше приток кислорода.

  • Почвенная коррозия – в зависимости от состава почв, а также ее аэрации, коррозия может протекать более или менее интенсивно. Кислые почвы наиболее агрессивны, а песчаные – наименее.
  • Аэрационная коррозия — возникает при неравномерном доступе воздуха к различным частям материала.
  • Морская коррозия – протекает в морской воде, в связи с наличием в ней растворенных солей, газов и органических веществ.
  • Биокоррозия – возникает в результате жизнедеятельности бактерий и других организмов, вырабатывающих такие газы как CO 2 , H 2 S и др., способствующие коррозии металла.
  • Электрокоррозия – происходит под действием блуждающих токов на подземных сооружениях, в результате работ электрических железных дорог, трамвайных линий и других агрегатов.

Методы защиты от коррозии металла

Основной способ защиты от коррозии металла – это создание защитных покрытий – металлических, неметаллических или химических.

Металлические покрытия.

Металлическое покрытие наносится на металл, который нужно защитить от коррозии, слоем другого металла, устойчивого к коррозии в тех же условиях. Если металлическое покрытие изготовлено из металла с более отрицательным потенциалом (более активный) , чем защищаемый, то оно называется анодным покрытием . Если металлическое покрытие изготовлено из металла с более положительным потенциалом (менее активный), чем защищаемый, то оно называется катодным покрытием .

Например, при нанесении слоя цинка на железо, при нарушении целостности покрытия, цинк выступает в качестве анода и будет разрушаться, а железо защищено до тех пор, пока не израсходуется весь цинк. Цинковое покрытие является в данном случае анодным .

Катодным покрытием для защиты железа, может, например, быть медь или никель. При нарушении целостности такого покрытия, разрушается защищаемый металл.

Неметаллические покрытия.

Такие покрытия могут быть неорганические (цементный раствор, стекловидная масса) и органические (высокомолекулярные соединения, лаки, краски, битум).

Химические покрытия.

В этом случае защищаемый металл подвергают химической обработке с целью образования на поверхности пленки его соединения, устойчивой к коррозии. Сюда относятся:

оксидирование – получение устойчивых оксидных пленок (Al 2 O 3 , ZnO и др.);

фосфатирование – получение защитной пленки фосфатов (Fe 3 (PO 4) 2 , Mn 3 (PO 4) 2);

азотирование – поверхность металла (стали) насыщают азотом;

воронение стали – поверхность металла взаимодействует с органическими веществами;

цементация – получение на поверхности металла его соединения с углеродом.

Изменение состава технического металла также способствует повышению стойкости металла к коррозии. В этом случае в металл вводят такие соединения, которые увеличивают его коррозионную стойкость.

Изменение состава коррозионной среды (введение ингибиторов коррозии или удаление примесей из окружающей среды) тоже является средством защиты металла от коррозии.

Электрохимическая защита основывается на присоединении защищаемого сооружения катоду внешнего источника постоянного тока, в результате чего оно становится катодом. Анодом служит металлический лом, который разрушаясь, защищает сооружение от коррозии.

Протекторная защита – один из видов электрохимической защиты – заключается в следующем.

К защищаемому сооружению присоединяют пластины более активного металла, который называется протектором . Протектор – металл с более отрицательным потенциалом – является анодом, а защищаемое сооружение – катодом. Соединение протектора и защищаемого сооружения проводником тока, приводит к разрушению протектора.

Категории ,

К химическим свойствам следует отнести способность металлов сопротивляться окислению или вступать в соединения с различными веществами: кислородом воздуха, влагой (металлы, соединяясь с кислородом и водой, образуют основания (щелочи)), углекислотой, и д.р. Чем лучше металл вступает в соединения с другими элементами, тем легче он разрушается. Химическое разрушение металлов под действием окружающей среды при обыкновенной температуре называется коррозией металлов .

К химическим свойствам металлов относится способность образовывать окалину при нагреве в окислительной атмосфере, а также растворяться в различных химически активных жидкостях: кислотах, щелочах и т.п. Металлы, стойкие к окислению при сильном нагреве, называются жаростойкими (окалиностойкими).

Способность металлов сохранять в условиях высоких температур свою структуру, не размягчаться и не деформироваться под воздействием нагрузки называется жароупорностью.

Сопротивление металлов коррозии, окалинообразованию и растворению определяется по изменению веса испытуемых образцов на единицу поверхности за единицу времени.

Коррозия металлов . Словом «коррозия» (по-латыни – «разъедание») принято обозначать широко известные явления, заключающиеся в ржавлении железа, покрытие меди зеленым слоем окиси и тому подобных изменениях металлов.

В результате коррозии металлы частично или полностью разрушаются, качество изделий ухудшается, и они могут оказаться непригодными для использования.

Большинство металлов встречается в природе в виде соединений с другими элементами, например, железо – в виде Fe 2 O 3 , Fe 3 O 4 , FeCO 3 , медь – в виде CuFeS 2 , Cu 2 S, алюминий – в виде Al 2 O 3 , и т.д. В результате металлургических процессов устойчивая связь металлов с веществами, имевшаяся в природном состоянии, нарушается, но она восстанавливается в условиях соединения металлов с кислородом и другими элементами. В этом заключается причина возникновения коррозии.

Разработка теории коррозии является заслугой русских ученых В.А.Кистяковского, Г.В.Акимова, Н.А.Изгарышева и д.р. по мнению исследователей явлений коррозии, существуют два вида коррозии: электрохимическая и химическая коррозия.

Электрохимической коррозией (Рис.13.) называется процесс разрушения металлов при соприкосновении с жидкостями, проводящими электрический ток (электролитами), т.е. с кислотами, щелочами, растворами солей в воде, водой с растворенным в ней воздухом. Происходящие здесь явления подобны тем, которые можно наблюдать в гальваническом элементе. В стали, например, гальванический элемент образует карбид железа и феррит. В электролитах карбид остается неизменным, феррит же растворяется и дает с веществом электролита ржавчину – продукт коррозии.



О поведении различных металлов в электролитах можно судить по занимаемому ими месту в ряду напряжений: калий, кальций, магний, алюминий, марганец, цинк, хром, железо, кадмий, кобальт, никель, олово, свинец, водород, сурьма, висмут, медь, ртуть, серебро, золото. В приведенном ряду металлы расположены по величине нормального электрического потенциала (т.е. полученного при погружении металла в нормальный раствор его соли) по отношению к водороду. Каждый металл этого ряда в паре с другим в электролитах образует гальванический элемент, причем разрушаться будет тот металл, который в ряду располагается левее. Так, в паре медь – цинке разрушается цинк. Ряд напряжений имеет весьма большое практическое значение: он указывает на опасность располагать в непосредственном соприкосновении разнородные металлы, так как этим создаются условия для образования гальванического элемента и разрушения одного из металлов, левее располагающегося в ряду напряжений.

Рис.13.Схема, иллюстрирующая процесс электрохимической коррозии. На одном полюсе растворяется (корродирует) неблагородный металл, на другом – выделяется водород.

Химической коррозией называется разрушение металлов и сплавов в сухих газах при высокой температуре и в жидкостях, не имеющих свойств электролитов, например, в масле, бензине, расплавленных солях и д.р. При химической коррозии под действием кислорода воздуха металлы покрываются тончайшим слоем окислов. При химической коррозии металл подвергается не всегда только поверхностному разрушению, но коррозия проникает и в глубину металла, образуя очаги или располагаясь по границам зерен. (пример. Серебряные предметы со временем темнеют, потому что в воздухе содержаться газообразные соединения серы, которые вступают в химическую реакцию с серебром. Образующийся при этом сульфид серебра остается на поверхности изделий в виде коричневатой или черной пленки.)

ОПРЕДЕЛЕНИЕ

При соприкосновении с окружающей средой многие металлы, а также сплавы на основе металлов могут подвергаться разрушению за счет химического взаимодействия (ОВР с веществами, находящимися в окружающей среде). Такой процесс называется коррозией .

Различают коррозию в газах (газовая коррозия), происходящую при высоких температурах в отсутствии воздействия влаги на поверхности металлов, и электрохимическую коррозию (коррозия в растворах электролитов, а также коррозия во влажной атмосфере). В результате газовой коррозии на поверхности металлов образуются оксидные, сульфидные и т.д. пленки. Этому виду коррозии подвергаются арматура печей, детали двигателей внутреннего сгорания и т.д.

В результате электрохимической коррозии окисление металла может приводить как к образованию нерастворимых продуктов, так и переходу металла в раствор в виде ионов. Этому типу коррозии подвергаются трубопроводы, находящиеся в земле, подводные части кораблей и т.д.

Любой раствор электролита – водный раствор, а в воде содержатся кислород и водород, способные к восстановлению:

O 2 + 4H + +4e = 2H 2 O (1)

2H + +2e=H 2 (2)

Эти элементы являются окислителями, которые вызывают электрохимическую коррозию.

При написании процессов, происходящих при электрохимической коррозии важно учитывать стандартные электродные потенциалы (ЭП). Так, в нейтральной среде ЭП процесса 1 равен 0,8B, поэтому окислению кислородом подвергаются металлы ЭП которых меньше, чем 0,8B (металлы, расположенные в ряду активности от его начала до серебра).

ЭП процесса 2 — -0,41В, значит окислению водородом подвергаются только те металлы, потенциал которых ниже, чем -0,41В (металлы, расположенные в ряду активности от его начала до кадмия).

На скорость коррозии большое влияние оказываю примеси, которые может содержать тот или иной металл. Так, если в металле имеются примеси неметаллического характера, а их ЭП выше, чем ЭП металла, то скорость коррозии существенно повышается.

Виды коррозии

Различают несколько видов коррозии: атмосферную (коррозия во влажном воздухе при н.у.), коррозию в грунте, коррозия при неравномерной аэрации (доступ кислорода к разным частям металлического изделия, находящегося в растворе, неодинаков), контактная коррозия (соприкосновение 2х металлов, с разными ЭП в среде, где присутствует влага).

При коррозии на электродах (аноде и катоде) происходят электрохимические реакции, которые можно записать соответствующими уравнениями. Так, в кислой среде электрохимическая коррозия протекает с водородной деполяризацией, т.е. на катоде выделяется водород (1). В нейтральной среде электрохимическая коррозия протекает с кислородной деполяризацией — на катоде происходит восстановление воды (2).

К (катод) (+):2H + +2e=H 2 — восстановление (1)

А (анод) (-): Me — ne →Me n + – окисление

К (катод) (+): O 2 + 2H 2 O + 4e → 4OH — — восстановление (2)

В случае атмосферной коррозии на электродах происходят следующие электрохимические реакции (причем на катоде, в зависимости от среды могут протекать различные процессы):

А (анод) (-): Me→Me n + +ne

К (катод) (+): O 2 + 2H 2 O + 4e → 4OH — (в щелочной и нейтральной среде)

К (катод) (+): O 2 + 4H + + 4e → 2H 2 O (в кислой среде)

Защита от коррозии

Для защиты от коррозии применяют следующие методы: использование химически стойких сплавов; защита поверхности металлов покрытиями, в качестве которых чаще всего используют металлы, покрывающиеся на воздухе оксидными пленками, устойчивыми к действию внешней среды; обработка коррозионной среды; электрохимические методы (катодная защита, метод протекторов).

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание Деталь состоит из сплава железа и никеля. Какой металл будет быстрее разрушаться при коррозии? Запишите уравнения анодного и катодного процессов при атмосферной коррозии. Значения стандартных электродных потенциалов E(Fe 2+ /Fe)= — 0,444В, E(Ni 2+ /Ni)= -0,250В.
Решение В первую очередь коррозии подвергаются активные металлы (обладающие самыми отрицательными значениями стандартных электродных потенциалов), в данном случае – это железо.